The G⁰ experiment @ Jefferson Lab.

Nucleon strange form factors in parity-violating experiment

G⁰ **Collaboration** : Spokesperson: Doug Beck (UIUC)

Caltech, Carnegie-Mellon, William&Mary, Hendricks College, IPN-Orsay, Ljubljana, LPSC-Grenoble, NMSU, Illinois, JLab, Kentucky, NMSU, Manitoba, Maryland, Ohio, TRIUMF, Virginia Tech, Winnipeg, Yerevan, Zagreb

Physics case and experimental set-up

Results for the Backward Angle configuration.

Results on vector strange form factors and isovector axial form factor Summary

C. Furget for the GO collab., EINN09, September 2009

Physics motivation

What role do strange (sea) quarks play in nucleon properties?

Momentum (Global DIS analysis, Lai et al.): $0.018 \le \langle x(s+\overline{s}) \rangle \le 0.04$ $-0.001 \le \langle x(s-\overline{s}) \rangle \le 0.005$ Spin (DIS): $\Delta s \approx -0.1 \text{ to } 0$ (Hyp: $s = \overline{s}$) Mass: $\langle N | \overline{ss} | N \rangle \sim 0 \text{ to } 30\%$ ($\pi N \sigma$ -term)

GO goal : Determine the contribution $\langle N | \bar{s} \gamma^{\mu} s | N \rangle$ of the strange quarks to the electric and magnetic nucleon form factors

- \checkmark Q² ~ 0 (GeV/c)² : charge radius and magnetic moment
- \checkmark Q² dependence : extraction of $G_e{}^s$ and $G_M{}^s$ at 0.22 and 0.63 (GeV/c)²
- \checkmark Measurement of the axial form factor G_A^e

Quark decomposition of EM and Weak form factors

In elastic eN scattering, charge and current/spin distributions in the nucleon are expressed through EM and Weak nucleon form factors

Proton and Neutron Electromagnetic Form Factors :

Measured with precision of 2-4 % in the 0.1 – 1 GeV² Q² range (~15% for neutron electric F.F.)

$$G_{E,M}^{\gamma,p} = \frac{2}{3}G_{E,M}^{u,p} - \frac{1}{3}G_{E,M}^{d,p} - \frac{1}{3}G_{E,M}^{s,p}$$
$$G_{E,M}^{\gamma,n} = \frac{2}{3}G_{E,M}^{u,n} - \frac{1}{3}G_{E,M}^{d,n} - \frac{1}{3}G_{E,M}^{s,n}$$

+ proton-neutron charge symmetry reduce from 6 to 3 unknowns

Proton Weak Form Factors :

$$G_{E,M}^{Z,p} = \left(1 - \frac{8}{3}\sin^2\theta_W\right)G_{E,M}^{u,p} + \left(-1 + \frac{4}{3}\sin^2\theta_W\right)G_{E,M}^{d,p} + \left(-1 + \frac{4}{3}\sin^2\theta_W\right)G_{E,M}^{s,p}$$

Extraction of the strange quarks contribution :

$$G_{E,M}^{s} = \left(1 - 4\sin^{2}\theta_{W}\right)G_{E,M}^{\gamma,p} - G_{E,M}^{\gamma,n} - G_{E,M}^{Z,p}$$

Parity violation asymmetry

Elastic scattering of longitudinally polarized electrons on unpolarized nucleon :

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = \frac{2\left[\sum_{e} \mathcal{M}_{V}\right]^*\left[\sum_{e} \mathcal{M}_{V}\right]}{\left|\sum_{e} \mathcal{M}_{V}\right|^2} \quad (M_Z << M_V \text{ at } 1 \text{ (GeV/c)}^2 \text{)}$$

$$= -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \frac{\varepsilon G_E^{(\gamma,p)} \mathbf{G}_E^{(\mathbf{Z},p)} + \tau G_M^{(\gamma,p)} \mathbf{G}_M^{(\mathbf{Z},p)} - (1 - 4\sin^2\theta_W) \varepsilon' G_M^{(\gamma,p)} \mathbf{G}_A^e}{\varepsilon \left(G_E^{(\gamma,p)}\right)^2 + \tau \left(G_M^{(\gamma,p)}\right)^2}$$

$$A_{PV} = A_0 + \alpha \mathbf{G}_E^s + \beta \mathbf{G}_M^s + \delta \mathbf{G}_A^e(T = 1)$$

$$with$$

$$\tau = Q^2/(4M_p^2)$$

$$\varepsilon = 1/(1 + 2(1 + \tau)\tan^2(\theta_e/2))$$

$$\varepsilon' = \sqrt{\tau(1 + \tau)(1 - \varepsilon^2)}$$

G0 plan : Full separation of G_E^s , G_M^s et G_A^e (T=1) for Q² = 0.22 and 0.63 (GeV/c)²

✓ Forward Angle (
$$\Theta_e = 7 - 15^\circ$$
), LH₂ target :
$$\approx \alpha G_E^s + \beta/2 G_M^s + \gamma/10 G_A^e$$

$$\Rightarrow Backward Angle (\Theta_e = 110^\circ), LH_2 target : \approx \alpha/3 G_E^s + \beta G_M^s + \gamma G_A^e$$

$$\Rightarrow Backward Angle (\Theta_e = 110^\circ) : LD_2 target : \approx \alpha/4 G_E^s + \beta/4 G_M^s + \gamma G_A^e$$

Axial form factor in electron-nucleon scattering

$$G_{A}^{e,N} = \tau_{3}G_{A}^{e,N}(T=1) + G_{A}^{e,N}(T=0)$$

= $-\tau_{3}(1+R_{A}^{T=1}) \mathbf{G}_{A}^{CC}(Q^{2}) + \sqrt{3}R_{A}^{T=0} \mathbf{G}_{A}^{(\mathbf{8})}(Q^{2}) + (1+R_{A}^{(0)}) \mathbf{G}_{A}^{s}(Q^{2})$

1/ $G_{A}^{cc}(Q^{2}) = \frac{g_{A}}{\left(1 + \frac{Q^{2}}{M_{A}^{2}}\right)^{2}}$ $g_{A} = 1.2670 \pm 0.0035 \quad (neutron \beta \, decay)$ $M_{A} = 1.001 \pm 0.020 \quad (vN \, data)$

2/
$$G_A^{(8)}(0) = 0.169 \pm 0.007$$
 (from hyperon decay)
 $G_A^s(0) = \Delta s$ ranging from 0 to -0.14 (DIS data)
Q2 dependence unknown

3/ Electroweak radiative corrections (including anapole effects):

 $R_A^{T=1} \approx -0.24 \pm 0.24$ Isovector contr. poorly determined $R_A^{T=0} \approx -0.24 \pm 0.14$ Q2 dependence unknown

PV electron scattering experiments

Expt/Lab	Target/ Angle	Q ² (GeV ²)	A _{phys} (ppm)	Sensitivity	Status
SAMPLE/Bates					
SAMPLE I	LH ₂ /145	0.1	-6	$m_s + 0.4G_A$	2000
SAMPLE II	LD ₂ /145	0.1	-8	m _s + 2G _A	2004
SAMPLE III	LD ₂ /145	0.04	-4	$m_s + 3G_A$	2004
HAPPEx/JLab					
HAPPEX	LH ₂ /12.5	0.47	-15	G _E + 0.39G _M	2001
HAPPEX II, III	LH ₂ /6	0.11	-1.6	<i>G</i> _E + 0.1 <i>G</i> _M	2006, 2007
HAPPEx He	⁴He/6	0.11	6	GE	2006, 2007
HAPPEx	LH ₂ /14	0.63	-24	<i>G</i> _E + 0.5 <i>G</i> _M	-2009
A4/Mainz					
PVA4	LH ₂ /35	0.23	-5	<i>G</i> _E + 0.2 <i>G</i> _M	2004
PVA4 I	LH ₂ /35	0.11	-1.4	$G_{\rm E}$ + 0.1 $G_{\rm M}$	2005
PVA4 II	LH ₂ /145	0.23	-17	<i>G</i> _E + η <i>G</i> _M + η' <i>G</i> _A	2009
PVA4 III	LH ₂ /35	0.63	-25.5	$G_{\rm E}$ + 0.64 $G_{\rm M}$	-2009
GO/JLab			-	-	-
Forward	LH ₂ /35	0.1 to 1	-1 to -40	<i>G</i> _E + η <i>G</i> _M	2005
Backward	LH ₂ /LD ₂ /110	0.23, 0.63	-12 to -45	<i>G</i> _E + η <i>G</i> _M + η' <i>G</i> _A	2009

G0 experimental setup

Measurement $A_{PV} \sim -3$ to -40 ppm with $dA_{PV} / A_{PV} \sim 5\%$ and separation of G_E^s and G_M^s

Two phases for Forward measurement (F) and Backward measurements (B)

CEBAF accelerator

- E_{beam} = 3.03 GeV (F), 362 687 MeV (B)
- \sim L = 2 to 4 10³⁸ cm⁻² s⁻¹ with I_e = 40 (F), 20-60 µA (B)
- High polarization : 75% (F), 85% (B)

Fast Helicity reversal (33 ms) + beam feedback

GO setup (hall C)

- Superconducting toroidal magnet
- \checkmark LH₂ (F,B) and LD₂ (B) targets
- \checkmark Large acceptance $\Delta\Omega$ = 0.9 sr (F), 0.5 sr (B)

G0 Forward angle configuration

Single measurement for $Q^2 = 0.12 - 1 (GeV/c)^2$

 E_{e-} = 3 GeV and $\theta_P \sim 70^\circ \rightarrow \theta_e$ = 7 to 15 °

 Recoil protons detected through a toroidal magnetic field in 8 sectors of 16 Focal plane detectors (FPD).

 Time of flight discrimination between elastic and inelastic processes

Strange quark contribution :

$$\boldsymbol{G}_{\boldsymbol{E}}^{\boldsymbol{s}} + \eta \boldsymbol{G}_{\boldsymbol{M}}^{\boldsymbol{s}} = \frac{4\pi\alpha\sqrt{2}}{G_{F}Q^{2}} \frac{\varepsilon G_{E}^{p^{2}} + \tau G_{M}^{p^{2}}}{\varepsilon G_{E}^{p} \left(1 + R_{V}^{(0)}\right)} \left(A_{phys} - A_{NVS}\right)$$

A null strange quark contribution is rejected at 89 % CL

G0 Backward angle configuration

GO backward measurements at $Q^2 = 0.22$ and 0.63 (GeV/c)²

- Detection of the scattered electrons $(\pmb{\theta}_e \sim 110^\circ)$
- Small Q² acceptance : 2 different beam energies required (362 and 687 MeV)
- Measurement on LH_2 and LD_2 targets

Experimental set-up

- Standard 2 ns beam structure
- Turn-around of the magnet (compared to forward configuration)
- Coincidence matrix between 9 CED and 14 FPD scintillators to separate elastic and inelastic electrons
- Cherenkov detector electron/pion separation
- \rightarrow Electrons AND pions matrices have been recorded

Analysis overview

Rate corrections from electronics

Correction on the yields (for each helicity):

 \checkmark electronic deadtime (full simulation)

✓ random coincidence pion-Cerenkov (direct measurement)

(which depend on the beam current and physics asymmetry)

Additional correction on the asymmetry :

- ✓ Residual Deadtime (<3%)</p>
- ✓ random coincidences CED-FPD in electron matrix

(estimated from specific measurement)

Data set	Correction to Yield (%)	Asymmetry Correction (ppm)	systematic error (ppm)
LH ₂ / 0.22 GeV ²	6	- 0.31	0.08
LD ₂ / 0.22 GeV ²	13	- 0.58	0.21
LH ₂ / 0.67 GeV ²	7	-1.28	0.18
LD ₂ / 0.67 GeV ²	-9	-7.0	1.8

Counting experiment :

Deadtimes (%)

Backgrounds - Magnetic Field Scans

Magnetic field scans :

→ Use simulation Shapes to help determine dilution factors

Main contribution are :

 Aluminum Windows (~10%)
 π contamination in LD₂ at Q² = 0.63 GeV²

Data set	Asymmetry Correction (ppm)	systematic error (ppm)
LH2 / 0.22 GeV ²	0.5	0.11
LD2 / 0.22 GeV ²	0.07	0.04
LH2 / 0.67 GeV ²	0.13	0.62
LD2 / 0.67 GeV ²	2.03	0.38

$$A_{corr} = \frac{A_{meas} - f_{Al}A_{Al} - f_{\pi}A_{\pi}}{1 - f_{Al} - f_{\pi}}$$

Physics Asymmetries

Data Set	Asymmetry	Stat	Sys pt	Sys Global	Total
H 362	-11.416	0.872	0.268	0.385	0.990
D362	-17.018	0.813	0.411	0.197	0.932
H687	-46.14	2.43	0.84	0.75	2.68
D687	-55.87	3.34	1.98	0.64	3.92

Preliminary results

(all entries in ppm, not for quotation)

Comments :

- Statistical errors between 4.7 to 7.6 % of the asymmetry (depending on the setting)
- ✓ Beam polarization error (1.6%) dominate the systematic point-to-point error except for LD_2 target at 0.63 GeV² where the rate correction error dominates.
- \checkmark Main contributions to the global systematic errors are coming from polarization measurement for LD₂ setting and background correction for LH₂ setting.

Strange form-factors extraction

$$A_{phys} - a_0 = a_1 G_E^s + a_1 G_M^s + a_3 G_A^e$$

Q²	Setting	Aphys-ao	aı	۵2	Q ₃
	F / LH ₂	+3	79	43	2
0.63	B / LH ₂	-8	22	63	12
	B / LD ₂	-2	12	12	9

(all entries in ppm, not for quotation)

Starting from asymmetries, it requires :

- ✓ Effective Q^2 determination from simulation : Q^2 = 0.2205 and 0.6279 (GeV/c)²
- \checkmark Interpolation of GO forward angle data
- \checkmark 2 Bosons corrections on the asymmetries : < 1.5% effect

(Tjon, Blunden, Melnitchouk, Phys. Rev. C 79, 055201 (2009))

 \checkmark a_i-coefficients for LH₂ asymmetries : Kelly E.M. form factors (PRC 70 (2004)

 \checkmark a_i-coefficients for LD₂ asymmetries : Use deuteron model (from Schiavilla priv. comm.)

G0 results on strange form-factors

G0 results on strange form-factors

Non-exhaustive comparison with theory (only small sample of models)

 \checkmark Different approaches based on Lattice QCD predictions

Lewis et al. (2003), Leinweber et al. (2004, 05), Doi et al. (2009)

Some other models predict small G_E s and sizeable GMs

2 component model (Bijker et al.), Pert. Chiral quark model (Lyubovitkij et al.), simple quark model (Riska et al.)

G0 results on strange form-factors

Non-exhaustive comparison with theory (only small sample of models)

- ✓ Different approaches based on Lattice QCD predictions
 Lewis et al. (2003), Leinweber et al. (2004, 05), Doi et al. (2009)
- $\checkmark\,$ Some other models predict small G_Es and sizeable GMs

VDM model (Bijker et al.), Pert. Chiral quark model (Lyubovitkij et al.), simple quark model (Riska et al.)

Contribution to overall form-factors

NEXT STEPS :

- \checkmark combine GO and PVA4 data at Q² = 0.22 (GeV/c)²
- \checkmark Reduced uncertainties with foreseen PVA4 and Happex data at Q² = 0.63 (GeV/c)²
- Overall fit on 33 separate asymmetry measurements for H, D, He targets
 (prelimininary fit (including neutrino data) shown by J. Schaub et al. at PAVI09)

Summary

- ✓ New GO measurements of Backward asymmetries for 2 energies (Q2 = 0.22 and 0.63 (GeV/c)² and 2 targets (LH₂ and LD₂)
- ✓ Full separation of strange vector G_e^s , G_M^s and isovector axial G_a^e at 0.22 and 0.63 GeV² when combined with GO Forward measurements

First look at Q^2 dependence of strange quark contribution to proton's FF

- Small positive GE^S at higher Q2
- G_M^S consistent with zero
- \checkmark First results for the Q² behavior of the Axial isovector FF

First indication of the Q^2 dependence of the anapole contribution

- \odot Other results to come soon from GO :
 - Transverse beam spin asymmetry (2- γ exchange)
 - PV asymmetry in N- Δ transition (0.3 (GeV/c)²)
 - PV asymmetry in inclusive π^- production

(part of) the G0 Collaboration (backward angle run)

67 physicists from Caltech, Carnegie-Mellon, William&Mary, Hendricks College, IPN-Orsay, Ljubljana, LPSC-Grenoble, NMSU, Illinois, JLab, Kentucky, NMSU, Manitoba, Maryland, Ohio, TRIUMF, Virginia Tech, Winnipeg, Yerevan, Zagreb

Graduate Students: C. Capuano (W&M), A. Coppens (Manitoba), C. Ellis (Maryland), J. Mammei (VaTech), M. Muether (Illinois), J. Schaub (New Mexico State), M. Versteegen (Grenoble); S. Bailey (W&M)

Status on vector current form factors (2005)

Important improvements from coming measurements

Improved statistics of HAPPEX II (factor 6-10) at 0.1 (GeV/c)²

Separation of the 2 term (E,M) with Forward measurement (HAPPEX III)
 and Backward measurements (GO and A4)

 \Rightarrow Large Q² domain covered (0.1, 0.23, 0.47 and 0.8 (GeV/c)²)

Fit Uncertainty Limit Curves

Taken from J. Schaub talk (PAVI09)

- G0 (forward ep) + E734 (vp and $\overline{v}p$)
- HAPPEx (forward ep) + E734 (vp and $\overline{v}p$)
- PVA4 (forward and backward ep)
- **GO** (forward and backward *ep*, and backward *ed*)
- = HAPPEx + PVA4 + SAMPLE + G0 (0.1 GeV^2)

5 parameter fit

|--|

Parameter	Fit to Existing Data
$ ho_{s}$	0.13 ± 0.21
μ_s	0.035 ± 0.053
ΔS	-0.27 ± 0.41
Λ_{A}	1.3 ± 1.9
SA	0.32 ± 0.48
A REAL PROPERTY.	Pr

HAPPEX-III

PAVI '09 - Bar Harbor, Maine

Word data at $Q^2 = 0.1 (GeV/c)^2$

Solid Ellipse : 68.27% CL / 95.45% CL Uses theoretical constraints on the axial form factor

Placement of SAMPLE band depends on GA calculation

From J.Liu et al. PRC 76 (2007)

 $G_{E}^{s} = -0.006 + /-0.016$ (~ 0.2% of the proton electric FF) $G_{M}^{s} = 0.33 + /-0.21$ (~ 3% of the proton magnetic FF)

Asymmetry corrections

LH2 362 MeV	Value (ppm)	Stat. (ppm)	Syst. pt (ppm)	Sys. Glo (ppm)	Total (ppm)
Measured asym.	-9.941	0.872			
Background asym.	-9.441		0.034		
Dilution correction			0.109	0.411	
Transverse correction			0.025	0.008	
Rate correction	-9.444		0.090		
Beam polarization	-11.010		0.223	0.133	
EM Radiative corr.	-11.416		0.023		
Physics asym.	-11.416	0.872	0.268	0.431	1.009

LD2 362 MeV	Value (ppm)	Stat. (ppm)	Syst. pt (ppm)	Sys. Glo (ppm)	Total (ppm)
Measured asym.	-14.047	0.813			
Background asym.	-14.114				
Dilution correction			0.021	0.086	
Transverse correction			0.037	0.008	
Rate correction	-14.152		0.232		
Beam polarization	-16.498		0.331	0.197	
EM Radiative corr.	-17.018		0.061		
Physics asym.	-17.018	0.813	0.411	0.215	0.936

LH2 687 MeV	Value (ppm)	Stat. (ppm)	Syst. pt (ppm)	Sys. Glo (ppm)	Total (ppm)
Measured asym.	-38.141	2.443			
Background asym.	-38.272		0.405		
Dilution correction			0.467	0.888	
Transverse correction				0.008	
Rate correction	-38.393		0.173		
Beam polarization	-44.757		0.518	0.537	
EM Radiative corr.	-46.394		0.093		
Physics asym.	-46.394	2.443	0.831	1.038	2.781

LD2 687 MeV	Value (ppm)	Stat. (ppm)	Syst. pt (ppm)	Sys. Glo (ppm)	Total (ppm)
Measured asym.	-44.021	3.328			
Background asym.	-46.053		0.052		
Dilution correction			0.374	0.316	
Transverse correction			0.009	0.008	
Rate correction	-46.349		1.828		
Beam polarization	-54.033		0.621	0.644	
EM Radiative corr.	-55.858		0.201		
Physics asym.	-55.858	3.328	1.977	0.717	3.936

Deuterium Model $A_{phys} = a_0 + a_1 G_E^s + a_2 G_M^s + a_3 G_A^e$

calculations from R. Schiavilla, see also R.S., J. Carlson, and M. Paris, PRC70, 044007 (2004).

leading term of the asymmetry

axial form factor coefficient has ~15% correction from 2-body effects

